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MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

ABSTRACT � PART I

FINITE ELEMENT MODELING OF TWO-DIMENSIONAL

HYDRODYNAMIC CIRCULATION IN SHALLOW WATER MASSES

BY

JEROME J. CONNOR

and

JOHN D. WANG

The vertically integrated conservation of mass and momentum
equations for shallow water bodies are reviewed. The equations used
in this study are based on only two assumptions: hydrostatic pressure
and squares of surface elevation gradients negligible with respect to
unity. The finite element method is applied to reduce the governing
equations to a system of ordinary non-linear differential equations in
time for which two different numerical integration schemes are described,
Model results are compared with analytical solutions. Also, numerical
predictions of the tidal response for Massachusetts Bay are presented.
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CHAPTER l

INTRODUCT ION

Mathematical modelling of circulation and dispersion in water

bodies has developed rapidly during the past decade. The major impetus

has been the concern for the environment which has necessitated mare

detailed studies of water quality and especially the development of

transient predictive models.

This study is restricted to the development and evaluation af

finite element models for predicting the transient response of water

bodies due to tidal and wind excitation. Three dimensional solutions

are most desirable but the uncertainly of boundary conditions and in

the magnitudes of the eddy viscosities and turbulent diffusion

coefficients does nat justify the effort at this time. Therefore, this

study is further restricted to vertically well-mixed two dimensional

flow. Irregularity of the boundary geometry and depth are allawed for

but the velocities are assumed to be approximately uniform over the

depth.

There are a number of recent reports [ 1-7] describing finite

difference models for circulatian and dispersian in well-mixed estuaries

and coastal waters. The proposed models by Leendertse et al.[3] and

Abbot et al [ 7] appear to be well documented and have extensive

supporting software for data generation and plotting.

Finite difference models employ rectangular grids and one has

to resort to approximating an irregular boundary with orthogonal

segments. This requires a small mesh spacing throughout the domain.

Approximate techniques for expanding the mesh in the interior have



-10-

been employed but they can introduce additional numerical difficulties.

The finite element method was first applied to fluid flow by

Martin [8] who treated two-dimensional steady potential flow. It

has since been extended to Navier-Stokes flow [9], lake circulation

[10,11], and.long wave propagation  l2!. The method has proven to be

particularly convenient for problems involving irregular boundaries

since the mesh can be chosen to "fit" the boundary. However,

relatively little experience with finite element transient solutions

of hyperbolic equations has been accumulated in contrast to finite

difference models where stability has been studied extensively [15,16].

In what follows, a consistent derivation of the vertically

averaged equations for long wave propagation is presented. The

formulation is sufficiently different from existing formulations

 Pritchard, Ref. 2! to warrent its inclusion here. Next, the method

of weighted residuals [14] is applied to generate a "quasi" variational

statement which is the basis for the finite element discretization.

Three numerical integration schemes are evaluated for one and two-

dimensional test problems discretized with first order triangular

elements. The scheme is also applied to Massachusetts Bay, a fairly

complex coastal area, and a solution strategy for "adjusting" the

bottom friction is discussed.
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CHAPTER 2

BASIC HYDRODYNAMIC EQUATIONS

The 3-dimensional forms of the ensemble averaged continuity and

momentum equations constitute the basis for the present formulation.

They are

+  pu! +  pv! +  pw! = e3p
3t «X «z

t +  pu ! x +  puv! +  puw!
2

= pfv � p +x' +z +z
xx,x yx,y zx, z

 pv! +  puv! +  pv ! +  pvw!
2

= � pfu � p +r +w +z
«y xy,x yy,y zy,z

where u, v, w are the averaged velocities, e is a source of mass inflow

per unit volume, t are the sums of viscous and Reynolds stresses, p

is mass density and f is the Coriolis parameter. By definitio~, the

stress components are symmetrical with respect to the subscripts, i.e.,

T = t , etc.
xy yx'

A set of 2-dimensional equations is obtained by integrating �!

over the total depth and applying Leibnitz's rule. The notation and the

applied surface forces are shown in Figure 1. We assume the surface

2 2
slope is small and neglect  rl ! ,  rI ! with respect to unity. With,x ' ,y
this approximation, the surface force-interior stress relations for the

upper surface reduce to
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7  north!

 ver ticaj !

sur f ace force notation.



+n ~ - ~- ~- ~ +5 8

X ~X xx >y yx zx z~rI

c + q p I � n t � q  - p+ T ! +
y ,y   ,x xy ,y yy zy~z q

�!

� p +n T +n T I-p+T
,x x,y y ~ zz,x xz,y yz z rl

s swhere T are the applied tangential wind stresses and p is the e>ternal

pressure. A similar set applies for the bottom surface.

Leibnitz's rule defines partial differentiation of an integral

having variable limits. Its form for x differentiation is

3 Bf   g2g g 3 3
fdz = � dz + fl 3 f

3x 3x [ g Bx g Bx

gl gl
Using the general form of �! and applying the kinematic relation

z Q Dt 3t Bx 3y

�  pH! + � q + � q ~q3 3 3

Bt Bx x By y I

n n
3 3~ q + �  p u dz! + �  P uvdz!2 3

Wt x Bx By
h -h

= fq +~ +~ +p � +p
s b s an b 3h

y x x 3x 3x

n
3

 -p+ z !dz+ � T dz
xx By yx

-h -h

8
+- Bx

at g = rl and g = -h, assuming the density is constant over depth results

in the following "integrated" equations:
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a B B " 2 !
Bt y Bx

+ �  p uvdz! + �  p v dz
By

b sBR bBh
fq +T +T +p � +p

y y By By

+ � T dz+ �  -p+ T !dz
Bx xy By

where

H = h+ q

q p udz
-h

T}
q = p vdz

and q> is the distributed mass inflow per unit area.

To integrate the nonlinear advective terms we express the velocity

components as

u = u x,y,t! + u' x,y,z,t!

v v x,y,t! + v  x,y,z,t!
�!

q = pHv

U dz = v dz = 0
-h -h

Introducing �! in �! and grouping terms in a form similar to the 3-

dimensional momentum equations, we write the "integrated" momentum

equations as

where u, v denote the vertically averaged velocities and u', v' represent

the vertical deviations. By definition,



�  pH! + � q�+ � q3 3 3
Bt Bx 4 ay y I

3 3 3 3 3� o + �  uq ! + �  uq ! = fq + B" + �  F � F ! + � F
Bt 'x Bx x By y y x 3x xx p By yx

 8!

� q + �  vq ! + �  vq ! = - fq + B* + � F + �  F � F !3 3 � 3 3 3

Bt y Bx x By y x y Bx xy By yy p

sure force resultant and F , F , F are "equivalent" internal stress
xx' xy' yy

resultants due to turbulent and dispersive momentum flux.

n
F pdz

2
F  r - P u'! !dz

xx XX

F -  w - p v'! !dz
yy h yy

F F ~  w � pu'v'!dz
xy yx h xy

We approximate the flux terms with

3
F m p � q

xx xx 3x x

3
F = e � q

yy yy By y �0!

3 3
F F =c   � a + � q!

yx xy xy 3y M Bx y

One can interpret the e's as either equivalent Fickian diffusion

coefficients or generalized eddy viscosities. In �0! we have

allowed for orthotropic behavior. For isotropic flow, �0! applies

for arbitrary orientation of x, y, and therefore one has

where B*, B* contain the surface and bottom stress terms, F is the pres-x' y p



2E
xx yy

E ~ E
xy

Next, we assume the pressure variation with z is hydrostatic,

s
p e n-z! + p  l2!

and the bottom shear is predicted by a quadratic relation,

b f 2 2 1/2' =- � ~ s+q!
pH

b f 2 2 1/2
q  q +q!y pH2 y y

where C is a friction factor.
f

The corresponding forces are

n
s 2F ~ pdz= pH+~H

2

B*= T +7 +p � +pg H-* s b s 3H 3h
x x x 3x 3x

B* = t + T + p � + pg H-* s b s3H 3h
y 3y

Lastly, we express the mass density as

�5!p,+ <p

where p is constant. The incremental density 6p is small in comparison
0

to p for circulation in coastal waters and estuaries. Therefore,
0

we set p p except for the pressure force terms. This is the
0

Boussinesq approximation.

To complete the formulation, we need to establish the boundary

conditions. The total boundary, S, consists of flux segments, S , and

ocean segments, S, as shown in Figure 2. We refer the flux and
0



-17- S
0

, lan  exterior
normal!

nx

ds F ds
nx

F dy ~F dx
yx

 F -F !dx

Figure 2. Boundary notation.



boundary force measures to the local reference frame defined by

the exterior normal, n, and the tangential direction, s, where n ~ s

has the same sense as x ~ y.

Mass flux is a vector quantity and its components transform

according to

Pu dz a qx + a

n
q = pu dz=-a o +a q

s s nyw nx y �6!

a cos  n,y!
ny

a cos n x!
nx

F ~a  F -F!+a F
nx nx xx p ny yx

�7!

F=aF+a F-F!
ny nx xy ny yy p

and then transform according to �6!, obtaining

F = - F + F
e

nn p nn

e
F = F

ns ns
�8!

F a F +a F +2a a F
2 2

nn nx xx ny yy nx ny xy

F =  a - a !F + a a  F � F !e 2 2

ns nx ny xy nx ny yy xx

Consistent with interpreting the momentum flux due to nonuniform

velocity distribution through the depth as equivalent internal force

resultants, we write
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On a land boundary  assuming no tidal flats!, the flux components

are prescribed.

�9!qn = qs ==0 on S
f,land

On an ocean boundary, the normal and tangential boundary forces

are prescribed.

F ~ F
nn nn

�0!on S
0

F m F
ns ns

On flux boundaries other than land such as at river entrances the

normal flux is specified equal to the river mass flaw.

n river

�1!on S
river

q 0
s

e
When the eddy viscosities are neglected, F 0, and we cannot

prescribe the tangential flux or tangential boundary force . The

boundary conditions reduce to

q q onS
n n f

�2!

and

F F onS
nn 0

�3!

In the present model application, equation �3! with F
nn P

used although eddy viscosities are assumed non zero in the interior.
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CHAPTER 3

VARIAT IOHAL STAT EMENT

0 f p H!, + q +q � q !AHdA = 0
0 t x,x y,y I

A

�4!

ff fq -~  F -F! - � F -B! AqdA GB

x,t Bx xx p By yx x x

ff  q, � � F � �  F -F ! � B ! Aq dA = 0B B

Bx xy By yy p y y
A �S!

 -F +u  F -F!+u F !hqdS=O
nx nx xx p ny yx x

S
0

J  -F +e F +a  F -F!!hq dS=O
S ny nx xy ny yy p y

0

Here we have included the Coriolis and nonlinear terms in B.

The governing equations are  8! and the appropriate boundary

conditions. In what follows, we apply Galerkin's method [14]to establish

the variational statements which are the basis for the finite element

method.

Let AH, Aq , Aq represent weighting functions. We weight thex' y

continuity equation with respect to hH, the momentum equations with

respect to Aq, integrate over the domain, and require the residuals to

vanish. We also weight the force boundary conditions on S . The resulting
0

e~ressions are
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a � a
B = B* + fq � �  uq ! - �  uo !
x x y 3x x 3y

�t !

a aB = B+ � fq � �  vq ! � �  vq !
y y x 3x x

If < q -B! ~q +  F -F! ~q! +F  Aq !
x,t x x xx p x,x yx x,y

F hq dS = 0
nx x

0

If   q � B! hq +F  Aq! +  F -F! hq! ! dA
y t y y xy y x yy p y y

F hq dS = 0
ny y

o

�7!

We have required the flux weighting functions to vanish on S

Aq = hq = 0 on S
x y f

�8!

and consequently the boundary integrals on S drop out of �7!.

Applying Gauss's theorem to eliminate the derivatives of the force

terms in the momentum equations and combining with the boundary equations

Ieads to the desired form:
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CHAPTER 4

FINITE ELEMENT MODEL

The continuity equation �4! and modified momentum equations

�7,28! are the starting point for the finite element method. We

visualize the domain to consist of subdomains  elements! and take as

variables the values of q , q , H at the points  nodes! defining thex' y'

discretization. This is illustrated in Figure 3. The distribution

of a dependent variable over an elemental domain is expressed in terms

of the values of the variable at nodes contained in the element domain

and interpolation functi.ons. In this way, the equations are transformed

to a set of algebraic equations relating the discrete variables. In

the present formulation the simplest elements, viz. triangular with

linear interpolation functions>were chosen. However, more complex

elements and e~ansion functions will be implemented in future modeling.

We define the following notation:

q ,,H = values at node ixi' yi' i

q , q , H are matrices containing the nodal variables e!  e!  e!
-x ' -y

for an element

�9>
N = number of nodes

Q =  q , q , q ,...,q ! = system flux matrix �N nodal values!

H =  H , H ,...,H ! = system elevation matrix  N nodal values!

For example, H = $H , H , H ! for the triangular element shown e!

in Figure 3. The expansions are written as
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nodes

Interior domain discretized with finite elements

element relative

numbering scheme

Figure 3. Finite element geometric discretizatian.
n , n , n are the actual node numbers
for the nodes in the domain of element n.



� 24-

 e!
X X

 e!
q �O!

Aq = C hq
x x

Aq =C hq  e! �I!

aH - c m '!

and substituting in �4!, �7! results in the following element

residuals:

where C' is a row matrix. We are considering 3 variables per node.

One can generalize the approach and allow for a variable number of un-

knowns per node, i.e., different expansions for flux and elevation,

but we prefer to work with the simplest scheme.

In the Galerkin method, one takes the weighting functions

identical to the coordinate functions. Since the finite element method

employs local functions, the weighting function for a particular

nodal variable is finite  non-zero! only for those elements incident

on the node. Rather than treat individual nodes, it is more convenient

to evaluate element residuals and then superimpose the element con-

tributions at the nodes.

Taking the complete set of weighting functions for an element as
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�4!

for arbitrary dQ, hH.

We write the expanded form of �4! as

  Q!  < � 0 + >! +    H!  g � < + > !T T a

total 3t Bt h
�5!

and it follows that

MQ+P =0

�6!

MH+P = 0

Finally, we introduce the boundary conditions by modifying the rows

and columns of M corresponding to the prescribed variables and in-

corporating the prescribed terms in P. To minimize notation prolifera-

tion, we assume �6! represent the final constrained equations.
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CHAPTER 5

NUMERICAL INTEGRATION SCHEMES

Efficient stable numerical integration schemes are essential since

a typical problem vill involve several hundred node points and inte-

grations over at least one tidal cycle. Complex multi-step methods,

although more accurate, require considerably more computation time and

storage. Therefore, we have concentrated in this study on investigating

the stability and accuracy of relatively simple implicit. schemes.

Explicit stability criteria for finite element formulations such

as �6 ! have not yet been developed. The difficulty is due to the

arbitrariness of the caefficient matrices  i.e., the elements are

confined to a zone adjacent to the diagonal but. their magnitudes may

be irregular! and also the skew symmetry of the Coriolis and surface

elevation terms. One generally has to resort to approximate stability

measures based on norms . We make no attempt here to resolve this

problem since our primary objective is to evaluate the performance of

various schemes.

The simplest scheme is the trapezoidal rule. Its one dimensional

form is

= f y,t!
dt

y -y = �  f +f !+Eat
n+1 n 2 n+1 n

�7!

E = �  ht!
1 2 d f

12 2
dt



Iteration is required since the forcing terms in �6! are non-

linear. We include a relaxation factor to accelerate convergence and

evaluate the terms in the following order:

K H* �. H ! = �  p +p !
-n 2 -h n+l -b,n

�8!
-n+1 - -n+1' -a+l' n+1

N tP � Q ! �  P" + P !
0-1

2 -a+1 -n

The mass matrices are factored initially and the iteration and

stepping consists of successive forward and backward substitutions.

Convergence is defined by the percentage change in the Euclidian norms

for the surface elevation and mass flux vectors.

i 1  j l

n+1 i

�9!
25

"n+1 n+1 i
 ++1 j 


2N Q
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where N is the total number of nodes, and ch, C are the specified
tolerances.

The second method examined is the third order predictor-corrector

iterative scheme,

f  y,t!
d

dt

Predictor:

f 3f � 3f + f
1

n+I n n-1 n-2

�0!Corrector:

y - y � �f~ +8f � f ! +EAt* At ]-1
n 12 n+1 n n-1

i-1y~ By*+ � - 8! y"
n+1 n+1

E~ �  At! . t <g< t1 3 d f
12 3 n n+1

dt

  !
d

k ~At f y,t !1 n' n

k2 = At ~ f  y + 0.4k, t + 0.4At!n ' 1' n

k - At f y + 0.296978k + 0.158760k , t + 0.455737At!
n 1 2' n �1!

This scheme is not self-starting and requires more storage than

the trapezoida3. rule. However, it is more accurate and usually

converges faster. Equations �9! are again taken as the convergence

criteria.

The predictor-corrector scheme �0! is coupled with the following

version of the fourth order Runge-Kutta method,
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k4 ht f y + 0.218100k � 3.050965k + 3.832864k , t + h,t!n 1 ' 2 3' n

y = y + 0. 174760k � 0. 55148lk2 + 1.205535k3 + 0. 171185k
n

Z 0 ht !
4

This scheme has the lowest bound on the error for this family of

Runge-Kutta methods [15].

The solution of a given problem begins with an optional numoer

of integration steps using the Runge-Kutta method,  minimum three

time steps! and then shifts to the predictor-corrector method, At

any time step it is possible to change back to the Runge-Kutta method

to take advantage of its better accuracy. This flexible formulation

also makes it very easy to increase or decrease the time increment,

ht, if so desired.
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MODEL COMPARISONS AND RESULTS

The objective of this study is to develop a general numerical

model for the prediction of 2-dimensional hydrodynamic circulation

in waterbodies which are well-mixed through the water column.

Several example problems for which analytical solutions are

readily obtainable were solved with the finite element numerical model.

These examples demonstrate how the model performs in situations of

varying geometry and also show the effect of eddy diffusivity on

damping short "noise" waves generated by the numerical scheme due to

truncation and round-off errors. A circulation analysis for Massachu-

setts Bay was carried out.

The initial numerical solutions with the trapezoidal rule

required an average of 7 iterations per time step to obtain comparable

results. Since the higher accuracy Runge-Kutta method only requires

4 evaluations of the integrand per time step, this was found un-

satisfactory. Convergence with the trapezoidal rule can be accelerated

by extrapolating the integrand at the start of each new time step.

However, this necessitates more storage and the computational effort

is now of the same order as the predictor-corrector method. Therefore,

subsequent efforts were concentrated on the fourth order Runge-Kutta

and third order predictor-corrector methods.

In the first example, the forced standing wave in a rectangular

channel without friction or coriolis effect was modeled as shown in

Figure 4. The analytical solution is
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200

a. Channel section

b. Plane view showing arrangement of elements.
 lengths in meters!.

Figure 4. Sketch of rectangular channel.

TABLE 1

Comparison of analytical and numerical solution.

Rectangular channel. Initial velocities given by analytical

solution. Runge-Kutta method. ht=2.5 sec.

SURFACE HEIGHTS VELOCITIES

numerical analytical dif f erenca time numerical analytical dif f er ence

3T/4-1.0OOU

-1.0217
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where the forcing function at the open end, x = 0, is

= a sin Idt
x=0

and L, h are the channel length and depth. The numerical model was

started with the ve]ocity distribution defined by �2! for t = 0.

For t > 0, q = a sin u!t was prescribed at the 3 open end nodes and

the y velocities were set to zero along the boundaries. A compariso~

of the numerical and analytical results is listed in Table 1. The

agreement is very good as expected.

In a "real" situation, one usually does not know the initial

velocity field. One possible approach is to start the model with

all surface elevations and velocities set to zero  or some other

estimated values!. The second example demonstrates this type of start

up for the rectangular channel. The exact solution was obtained with

the method of characteristics. The results with the Runge-Kutta

scheme for this problem follow the exact solution closely. However,

the predictor-corrector results exhibit an instability characterized

by the growth of short waves as demonstrated in Figure 5. This

phenomenon was attributed to less accuracy of the scheme. The problem

2
was resolved by introducing some eddy viscosity  c = c = 2s = 10 m /sec!

x y xy

and again good agreement between analytical and numerical solutions
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was obtained. For the same time increments, the predictor-corrector

method requires approximately 25K less time than the Runge Kutta

scheme.

The 2-dimensional Courant-Friedricks-Lewy stability criterion

for explicit differencing of the wave equation is

6

<2 c
�3!

where 5 is the grid size and c is the wave velocity. For the rectangular

channel we have

c = v'gh = ~9. l~ = 626 m/sec.

so that 10 m < I5 < 40 m ~ 1.13 sec < 5t < 4.5 sec.

The results plotted in Figure 5 were obtained with 5t = 2.5 sec.

When ht was increased to 5 sec., gradual instability was observed.

An analytical solution in infinite series for the harmonic forcing

of a rectangular basin with a slot has recently been derived by 3riggs and

Madsen [17]. Figure 6 shows their results for a constant depth �6.6 m!

model representative of Massachusetts Bay. The model geometry and

corresponding finite element layout is shown in Figure 7. The

numerically computed surface elevations and current velocities,

Figures 8 and 9, compare favorably with the analytical. One explanation

for the small discrepancies may be found in the treatment of the ocean

boundary condition. In the numerical model the height is prescribed

exactly equal to 1.31 m � � cos u!t! across the slot, whereas the

analytical solution only satisfies this at four discrete points. The

numerical results were obtained with the Runge-Kutta method without

bottom friction, eddy viscosity or Coriolis effect. The C-F-L criterion
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is

c = J9.81 36.6 = 18.9 m/sec

5700
1.41 18.9 � 214 sec

~2c

and a t 200 sec was selected.

Lastly the tidal and winddriven circulation in Massachusetts Bay was

computed. The geographic boundaries and the finite element grid are

shown in figure 10. Since very little actual data is available, a model

yielding only the gross circulation is appropriate at this time. A

fairly coarse grid of 74 elements and 53 nodes was laid out reflecting

somewhat the varying bottom topography. The tidal ranges for the two

shore nodes at the extremeties of the ocean boundary were obtained from

tide tables [18] and the tide level was assumed t'o vary smoothly in

0
between. The Coriolis parameter was determined for a latitude of 42 N,

-4 -1
f = 0 ' 973 10 sec . No attempts were made to model lateral inflows

at this stage.

An initial solution for pure tidal motion with a small constant

value of C was carefully examined in order to estimate new improved

C 's for each element, so that the tidal ranges and lag times at the shore

points more closely match available tide table data. In estimating C

a strong correlation with local depth was assumed. The final solution

for which surface contour lines at high and low tide are shown on

Figures 11 � 12 had C varying between 0.0025 ~ 0.0011. However, to

really tune the model, current records at several points are desirable.

The calculated tidal water velocities are shown in Figures 13-14

and typical time histories of surface elevations and velocities are

plotted in Figures 15-16.
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Fig. ll. Surface contour lines after 68000 sec. �.5 tidal cycle!.

The elevations are given in meters above MLW. Note that only

decimals are shown for centroidal elevations.
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Fig. 12. Surface contour lines after 90000 sec � tidal cycles!.

Centroidal elevations are given in mm below >Q.W.



velo

Fig. 13. Computed currents af ter 56000 sec.  l. 25 tidal cycle!
Flooding Tide .
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Fig. 14. Computed currents after 78000 sec.  l. 75 tidal cycle!
Ebbing tide.
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The results were obtained using the Runge-Kutta integration

scheme neglecting convective terms and eddy diffusion in the momentum

equations. The CFL criterion is

p,t
6 6000

223 sec,

D2 c ~2 1 9

velocity, U 0, was 10 m/sec which produces a
2

approximately 1 dyn/cm according to the relation-

achieved. The 10m wind

surface shear stress of

ship given by Wu [19]:

= 2P . C'Us 1 . 2
air

C = 0.5.10 U
10

1 < U < 15 m/sec.
10

This is a frequently measured surface stress in the area.

and a ht = 200 sec was selected. The predictor-corrector scheme

was applied to the same problem but exhibited gradual instability

after one tidal cycle �4600 sec!. When ht was reduced to 150 sec,

comparable results were obtained for more than 2 tidal cycles. However,

5X more computing time was required.

Several cases of wind forcing were also investigated. Massachusetts

Bay is characterized by a low Rossby number  about O.l!, small surface

elevation change compared to the mean depth, and minor effect of bottom

friction. Therefore, it is reasonable to assume the response of the

system is linear. This is very important since it allows one to use

superposition which reduces the computational effort considerably.

To verify the upermissability" of superposition, two wind situations

without tidal motion were executed until steady state was essentially
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The steady-state current field for wind from North and South-West

are shown in Figures 17, 18. As a preliminary test of linear behavicr, a

situation with wind from South was also computed yielding numerical

values of velocities and surface elevations within I/ of the North wind

case.

Figures 19, 20 show Calcomp plots of a superposition of velocities

produced by wind from SW alone and pure tidal motion, whereas Figures 21, 22

show the same velocity fields but computed simultaneously. The validity

of a linear system assumption as a first approximation is clearly demon-

strated.

The limited experience acquired so far has demonstrated that

the finite element discretization approach is a reliable and efficient

method for fluid flow problems with complex boundaries. Qf the two

integration schemes tested, the Kunge-Kutta method seems to be universally

applicable whereas the predictor-corrector scheme is prone to exhibit

instability. If the forcing terms are sufficiently complicated to

estimate, the savings in iterations may give the latter scheme a

computational advantage, even if a smaller time step must be used. This

might, for instance, be the case when the convective terms must be

retained. Also the improved stability through the smoothing effect of

adding diffusive terms needs further examination.
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U = 10 ta/sec



� 53- Wind f rom SW
Uni f arm f ield, U = 10 m/sec

0.5 m/sec
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U � lO m/sec



-55-

10m/sec



-56-

REFERENCES

Reid, R.O. and B.R. Bodine: "Numerical Model for Storm Surges
in Galveston Bay", Journal of the Waterways and Harbors Division,
ASCE, Vol. 94, No. WW1, 1968

"Estuarine Modeling: An Assessment", Water Pollution Control
Research Series, Water Quality Of fice, Environmental Protection
Agency, Feb., 1971

Leendertse, J.J.: "A Water Quality Model for Well-Mixed
Estuaries and Coastal Seas, Vol. I, Principles of Computation",
Memorandum RM-6230-RC, The Rand Corporation, Santa Monica,
California, Feb., 1970

Masch, F.D. and N.J. Shankar: "Mathematical Simulation of Two-
Dimensional Horizontal Convective-Dispersion in Well-Mixed
Estuaries", Int. Assoc. for Hydraulic Research, 1971

Brady, D.K. and J.C. Geyer: "Development of a General Computer
Model for Simulating Thermal Discharges in Three Dimensions",
Edison Electric Institute Publication No. 72-902, Feb., 1972

Pearce, B.R.: "Numerical Calculation of the Response of Coastal
Waters to Storm Systems", TR 12, Coastal and Oceanographic
Engineering Lab., University of Florida, August, 1972

Abbott, M.B., Damsgaard, A. and G. S. Rodenhuis: "System 21,
Jupiter", Journal of Hydraulic Research, Vol. 11, No. 1, 1973

Martin, H.C.: "Finite Element Analysis of Fluid Plows", Proc.
2nd Conf. Matrix Meth. Str. Mech., AFFDL TR68-50, Wright-
Patterson AFB, Ohio, 1969

Tong, P,: "The Finite Element Method for Fluid Flow", Recent
Advances in Matrix Methods of Structural Analysis and Design",
R. Gallagher et al  Editors! U. of Alabama Press, 1971

Proceedings, 14th Conf. on Great Lakes Research, Int. Assoc. for
Great Lake Research, 1971

Loziuk, L., Anderson, J. and T. Belytschko: "Hydrothermal Analysis
by Finite Element Method", J. Hyd. Div., ASCE, Vol. 98, No. HYll,
November, 1972

Davis, J.M., Ph.D. Thesis, University College of Swansea, Sept., 1972

Guymon, G.: "Finite Element Solution for General Fluid Motion",
J. Hyd. Div., ASCE, Vol. 99, No. HY 6, June, 1973



-57�

14. Finlayson, B.A. and L. E. Scriven: "The Method of Weighted
Residuals and its Relation to Certain Variational Principles for
the Analysis of Transport Processes," Chemical Engineering
Science, Vol. 20, 1965

15. Ralston, A.: "A First Course in Numerical Analysis", McGraw Hill,
1965

16. Richtmyer, R.D. and K.W. Morton: "Difference Methods for
Initial-Value Problems", Interscience  Wiley!, Second Edition,
1967

17. Briggs, D. and 0. Madsen, Department of Civil Engineering, M.I.T.,
Private communication

18. U.S. Department of Commerce, NOAA, Tide Tables, East Coast of
North and South America, 1973

19. Wu, J.:"Wind Stress and Surface Roughness at Air-Sea Interface",
J. Geoph. Res., V. 74, No. 2, Jan., 1969



MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

PART II

ANALYTICAL MODELS FOR ONE- AND TWO-

LAYER SYSTEMS IN RECTANGULAR BASINS

DOUGLAS A. BRIGGS

OLE S. MADSEN

RALPH M. PARSONS LABORATORY

FOR WATER RESOURCES AND HYDRODYNAMICS

Department of Civil Engineering

Massachusetts Institute of Technology

Prepared with the Support of

Sea Grant Office

National Oceanographic and Atmaspheric Administration
Depar tment of Couanerce

Washington, D.C.



MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

ABSTRACT � PART II

ANALYTICAL MODELS FOR ONE- AND TWO-

LAYER SYSTEMS IN RECTANGULAR BASINS

BY

DOUGLAS A. BRIGGS

OLE S. MADSEN

A need for qualitative information concerning the hydrodynamics af
Massachusetts Bay has been seen from recent oceanographic measurements and
current studies in the Bay area. In response to this, two analytical models
have been derived for a simple rectangular configuration which can be
applied to the geometry of Massachusetts Bay. A one layer model has been
developed to simulate the conditions found during the winter season when
the water column is well mixed. A two layer model represents the strati-
fied case generally observed, with the presence of a strong thermocline,
during the summer.

Both models are derived from the linearised long wave equations in
cwo dimensions and analytical solutions are obtained by n~e lecting Coriolis
force, bottom friction, and wind stress. The models are depth averaged and
the. geometry of the Bay is represented by a rectangel. The boundary con-
ditions are specified as zero normal velocity along the walls and a constant
surface slope across the opening connecting Massachusetts Bay to the ocean.

The results of the two models indicate that the surface elevations
at high tide are fairly insensitive of the assumed conditions  one or two
layer model!. However, for the two layer model, relatively large inter-
facial waves are predicted as well as velocities which at some Locations in
the upper layer, are directed shoreward on the ebbing tide, rather than
seaward. Comparison of available field observations with these results
verify, qualitatively, that these conditions do exist and shows that ii a
model capable of predicting velocities in the Bay is desired, it must
incorporate the conditions corresponding to a two layer flow.
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CHAPTER I

INTRODUCTION

Massachusetts Bay, as seen in Figure l-k, lies at the eastern

edge of Massachusetts and is surrounded by land on three sides. The

average depth of the Bay is approximately 120 feet with the ocean

boundary between the tip of Cape Ann and the tip of Cape Cod, a dis-

tance of the order 41.0 nautical miles. Located on the northwest

is Boston Harbor through which three rivers, the Charles, the Chelsea,

and the Mystic, flow into the Bay. In addition, the Cape God Canal

exerts an effect on the Bay circulation by allowing an exchange with

Buzzards Bay to the southwest'

The results of current observations and other oceanographic

measurements recently taken in Massachusetts Bay have shown the occur-

rence of some interesting and unusual conditions. Field data concerning

the vertical structure of temperature, salinity, and density suggests

that a rather pronounced stratification exists during the summer

months. Drogue studies during periods of pronounced stratification

exhibited some rather peculiar phenomena. Thus, it was found that

shallow drogues during ebbing tide proceeded towards the shore

rather than seaward, as expected. Although the well mixed situation,

encountered during the winter season, is of interest and will be

considered, it is the stratified case that is of primary concern since

it is this situation that exhibits the most unusual condition.

-11-
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Thus it was felt that a simple model predicting the hydrodynamics

of Massachusetts Bay, shown in Figure 1-A, could lead to source insight

into the Bay circulation and possibly explain some of the unusual

field observations. Consequently, the theoretical development of two

analytical models, a one layer model representing the well mixed

case and a two layer model representing the stratified case, was

undertaken in an attempt to explain some of these conditions. The

primary quality of the desired model was that it be simple, such that

an analytical solution could be obtained and readily evaluated. This

was attained by the simplifying assumption of a depth averaged

rectangular configuration for the Bay area. Further, by linearizing

the governing equations neglecting Coriolis force, bottom friction,

and wind stress, a simple analytical solution was obtained, which

qualitatively explains some of the observed phenomena.

The models predict currents and amplitudes for the entire area

of Massachusetts Bay. Results of the model show a difference in the

predicted current pattern, suggesting the necessi.ty of including, in

a more sophisticated model, the effects of stratification if an accurate

prediction of the current field is desired. By co~paring the results

of the two layer model with field observations, it is demonstrated

that such occurrences as relatively large interfacial waves and

currents flowing toward the boundaries in the upper layer during an

ebbing tide are qualitatively explained by the simple two layer

model presented here.

-13�



CHAPTER II

THEORY AND DERIVATION OF THE ONE AND TWO LAYERED MODELS

2.1 Linear Lon Waves

Two dimensional long wave propogation has, in the past decade,

received considerable attention from both analytical and numerical mod-

as the system of equations describes a physical situation of

considerable interest to the coastal engineer. Able to predict the

hydrodynamics associated with storm surge and tidal-wave propagation,

models utilizing long wave theory have provided engineers and related

practitioners with the ability to predict tidal currents and elevations

in estuaries and coastal areas.

The long wave equations describe flow in the nearly horizontal

direction, with the implication that the pressure distribution is

hydrostatic and that the vertical accelerations are negligable. Due

to the fact that even numerical solutions of the non-linear equations

are rather difficult to obtain, the present models vill be restricted

to the linearized equations of motion in two dimensions. The equations,

which are vertically averaged, neglect convective accelerations and

allow a simplistic approach in their application to Massachusetts Bay.

Derivation of the one and two layered models are quite similar

in nature and both include, in the governing equations, Coriolis

force and frictional forces.

However, in order to preserve simplicity, we neglect the

influence of the Corialis force as well as bottom and interfacial

-14-



friction in the application of the two models.

2.2 Qne La ered Model

The dynamic equations for the one layered model can be derived

through the application of the Navier-Stokes equations for in-

compressible fluids. The equations of continuity can be derived by

summing the mass flux through a control volume. Representation of

the coordinate system and nomenclature for the one layered model is

found in Pigure 2-A. Jn linearized form, assuming constant depth and

vertically averaged velocities, the governing momentum equations for

tidal wave propogation, including bottom friction and Goriolis force,

become in the x and y directions respectively'.

g � + � � � C U � u � 2'a  sin j!!v = 0Bn Bu 1 1
Bx Bt 2 f h e

�. 1A!

g � + � � � C U � v + 2v  sing!u = 0Bg Bv 1 1
By Bt 2 f h e

�.1a!

where u and v are respectively components of the water velocity in the

x and y directions, t is time, g is acceleration due to gravity,

is the surface elevation relative to mean sea level, Cf is the local
2 2

shear � stress coefficient, U = u + v, h is the depth, u is the
e

angular velocity of the earth, and $ is the latitude. The linearized

form of the continuity equation is:

3q B hu! B hv!
Bt Bx By

�.2!

12.4 hours;

-15-

2mAssuming periodic motion, where u � and T equals the tidal period of
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it can be shown after linearization of the friction term by letting

�.4A!

g � + ituv - Xv + fu = 0
By

�.4B!

Equation �.4B! can be solved for v which is then introduced

�.SA!

By the same manner solving for u in Equation �.4A! v can be

obtained as:

�.5B!

Differentiating equation Equation �.5A! with respect to x and

Equation �.58! with respect to y and multiplying both by h allows sub-

stitution of the
B hu! and B terms in Equation {2.2!. TheB hv!

By

continuity equation now becomes:

av
Bt

-17-

 u,v! = Real f u,v!e !
i dt

Tl = Real  rle !
iQ! t

A = � C U � and by setting f = 2  d  sing! that:1 1

2 f h e

g + ion � Au � fv = 0Bn

Bx

into Equation �.4A! giving u in the form:

2 Bx   g! 2 f 2 By
i'd � A +- i>-X

Bg
2 By'  ~
 2 Bx

i d-A +

2 2
  + � !=0B T] B

2 2
Bx By

�.3A!

�.3B!



By letting � = mq the governing equation for g in the one layer3Q
8t

model becomes in final form:

2 2 2
+ 3 g +  rJ �

2 2 gh
3x 3y

 fj~! ! �
1+ i�

�.7!

The special case of no bottom friction,k = 0, and no Coriolis force,

f = 0, leads to:

32 2 2
+ � + � q=03 Q 4!

2 >2 gh3X 3y
�.8!

It is clear from �.5A!, �.5B! and �.7! that a non-zero bottom

shear stress will introduce a phase difference between u v and- ae
3x

and �. The magnitude ofBg
3y

the term � may be estimated, from an

h = 120 ft, and U = 1 ft/sec, to be 81ass ump tion o f C f = 0. 005,

which indicates that it is reasonable to neglect this term.

It is worth noting in the governing equation, the importance

of Coriolis effect on Massachusetts Bay where the mid-latitude is

approximately 42 N. The Coriolis term in Equation �.7! is of the

f 2 . 2order 0.45 since   � ! - sin 42, and obviously neglecting f is a
4!

� 18-

relatively poor assumption. However, by retaining Coriolis, the

boundary conditions become complicated and difficult to solve and since

the purpose of the study is to develop a simple qualitative model, f

is set equal to zero.

Now that the simplified governing equation has been developed

for the one layered model, the various conditions must be imposed on

the boundaries to specify the particular problem. As shown in



Geometry of Massachusetts Bay For The
One and Two Layered Models.

Fi gure 2-B:

� 19�

Figure 2-B, a simple geometry has been assumed with ef fectively im-

permeable walls on all sides except at y = y between x and x2 where
0

there is an opening representing the ocean boundary between

Massachusetts Bay and the Gulf of Maine.



Consequently the velocities can be specified along the walls such

that u = 0 at x = 0 and x for all y and that v = 0 at y = 0 for all x
0

and at y = y far 0 < z < xl x2 x
0

i t is seen that u = 0 co rresponds to

z . Neglecting Coriolis effects
0

� = 0 from Equation �.5A!an
Bx

and that v = 0 corresponds to � = 0 from Equation �.5B! . Con-an
By

sequently the boundary conditions may be summarized as:

Q
an
Bx

�,9A!At x=0

� m Q
Bx

�.98!At x=x
0

� = 0
By

�.9C!Aty=P

� a 0Bn
ByAt y = y

Tf the width of the opening between x and x is small it may be

Bnassumed that � or v is constant over the entire opening. A gross
By

conservation of mass consideration then gives, with V being the volume

of fluid in the bay above mean sea level:

V= jdxfndy

rate of change of volume within the bay must be equal to the inflowav

Yt

through the opening . This can be writ ten as:

�.lQ!

From Equation �.58!, assuming no friction and no Coriolis effect,

it can be shown that:

-20-

av� = � v x -x !h
Bt 2 1

0< x<x

�.9D!
x < x < x

2 � � D



Bq iu! 1 BV
By g  x -z !h Bt

�. 11!

Assuming that the tidal motion within the bay is periodic where

iu! t BUVe or � = i4!V the last boundary condition can be determined:
Bt

2

Aty=y � = � � UBg 4! 1
o By gh x-x

�.12!z<x x

The solution can be expected to be determined except for a

constant since only derivatives are prescribed as boundary conditions.

This constant is determined f rom considerations of the amplitude of

the tidal motion at some point in the bay.

The boundary conditions specified in �.9A! and �.9B! suggest

an x � dependence in the solution of tI such that g cos k x. It is
n

apparent that � = 0 at x 0 and also at x = x if k z = nN forBg
Bz o n o

n = 0,1,2,.... Thus k will take the form:
n

nvr
k

n z
0

The boundary condition in �.9C! suggests a dependency in y such

that q = cos m y. As a result � = 0 at y = 0 and consequently aBg
n By

solution of the following form will be sought:

iQ!t v'
rl = e g A cos k x cos m y

n n n
0

The solution must satisfy the governing equation �.8!, and by

substituting the general solution �.14! into �.8! m can be solved
n

in terms of k n'

�.15!n = 0,1,2...

-21-



For the particular case of Massachusetts Bay h = 120 feet and x
0

59. NN  nautical miles! and it can be shown that m is imaginary for
n

n > 0. Since we are seeking only that portion of the solution whicn is

real and by the fact that cos i  x ~ cosh<ad the general solution may be

written as:

i4! te  A cosmy+ ! A cos kx cosh my!
0 o n n n

n=l

where m is evaluated for n = 0 in Equation �.15! . The constants A
0 n

must be determined from the remaining boundary conditions specified

aty=y
0

Evaluating the volume of water in the bay, V, it can be shown

that only the term corresponding to n = 0 contributes to the volume

since integration of the terms for n > 0 from x = 0 to x give zero by
0

virtue of the boundary condition.s. Hence:

1
V= Ax sinmy

m 0 o 0 0
0

�.17!

-22-

which determines the boundary condition, stated in �.12!, to be

satisfied at y = y
0

The y derivative of the solution given by Equation �. l6! can now

be matched at y = y with the boundary conditions given in �.9D! and
0

�.12! with V from �.17! . Through a Fourier expansion the coefficients

A can be determined leading to the final form of the general solution:
n



2m sin m y  sin k x � sin k x !
i d t 0 oo n2 n 1q = A e  cos m y�

0
1

mk  x x

cosh m y
n

cos k xj
sinh m y n

n o
�. 18!

where A can be evaluated once the elevation g at some point in the
0

Bay is known.

2.3 Two La ered Model

Layer 1, x-di re c tion

1 2 2 1 2 1 1 1 ix+ � g � + g � � � C U � u +
Bt p 3 pl 3 2 f 1 hl 1 plhl

2u!  sin $!v 0
e 1 �.19A!

Derivation of the two layered analytical model is similar to the

one layered one although discrete differences appear with the intro-

duction of the second layer. The dynamic equations are again formu-

lated in two dimensions by the application of the Navier-Stokes equa-

tions and the continuity relationships through a mass balance. The

model is able to predict water surface and interface profiles and

velocities in both layers.

Representation of the coordinate system for the two layered

model is shown in Figure 2-C. The lower layer is specified as layer

one and the upper layer as layer two with the subscripts 1 and 2,

respectively. With this the dynamic equations, in linear form, for

the two layered model become:
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Layer 1, y � direction

1 2 2 1 2 1 1 1 i+ � g + g � � C U � v +~+
Bt p By p By 2 f I h 1 ph

2u!  sin $! u = 0
e 1 �.19a!

Layer 2, x-direction

Bu BTl 'I,
ix sz

Bt B p2h2 p2h2 2
+ g � � + � - 2'  sin $!v = 0 �.19C!

Layer 2, y-direction

2 ~i 8V� +g � � + +2m  sin $!u =0
2 2 2h2 2 �.19D!

Layer 1

Bg B h u B h v

�. 2OA!

Layer 2

Bn2 B<h2 2! B h2 2
�.208!By BtBt Bx

The above continuity equations have assumed two immiscible fluids,

where p is the density, T. and r. are the interfacial friction terms,
ix iy

and 7 indicates a surface wind shear stress. The remaining terms weres

defined in the one layer model and remain the same. The conservation

of mass equations sre similar to those in the previous model and when

linearized take the form:



i.e., no exchange of mass across the interface. If a mass exchange

between the two layers were considered the interfacial friction would

be influenced by the associated momentum transfer across the interface.

For a discussion of this reference is given in Pedersen �972! . The

governing equations are the linearized form of those given by Grubert

and Abbott �972!.

It is obvious that retaining the Coriolis and the frictional

terms tends to make the governing equations quite lengthy and difficult

to solve. Consequently, the bottom and interfacial friction terms,

the Coriolis force, and surface shear stress will be set equal to zero

in order to retain the simplicity that is desired in the model.

It is important to note the result of the steady state condition,
au Bvas in the case of wind setup, where � and � are zero. It can be
at Bt

2 n2shown that if and > do not equal zero then the momentum equations
ax By

for layer one, given by �.19A! and �.19B!, reduce to:

x-direction

�. 21A!
Bx p -p Bx

y-direction

an
�. 21B'!

Pl P2 ay

Obviously, if the densities of the two fluids are within a few percent

of each other, the slope of the interface is far greater than that of

the surface. In addition the slope of one is tilted in an opposite

direction from the other,

� 26�



In Massachusetts Bay the density of one layer is generally within

0.4 percent of the other. Since the two densities are so close to-

gether, an approximate form of the momentum equations for layer one
Pp

could be obtained by replacing � in q by unity.
p 2

Again summing the tidal motion in the bay to be periodic we take:
ih! t

 ql, g2, ul, u2, vl, v2! = Real  ql, q2, 1, 2, 1, 2!

Bu Bu Bv Bv

B ' B ' B ' B 1' 2' 1' 2

the governing equations can be derived for velocities and elevations.

Velocities in the upper layers, u2 and v, can be obtained directly

from the momentum Equations �e19C! and. �.19D!

u 2 ig Bx �.22A!

B+2
v

2 ih! By
� ' 22B!

obtained and introduced into the continuity equation for layer two,

�.20B!. In terms of g the governing equation for the interface

profile becoaes:

�.23!

The x and y derivatives of rl can now be introduced into Equations

�.19A! and �.19B! respectively. By this the velocities in the lower

layer are determined as:

-27�

By taking the derivative of o with
Bfh n

of v2 with respect to y, the B and

gh Bq Brl
2 2

=n + �   � + !
1 2 2 2 2

Bx By

respect to x and the derivative
B h2v2!

terms can be
By



gh an an23 3

2 '3+ 2'
ax axay

gh an an
3 3

2'   2' ~ 3' !
ax ay ay

2
an

�. 24A!u
1 i<a ax >ld p

2
an Pl P2

�.24B!vl ib! ay iQ Pl

Now that the velocities in layer one have been. derived, it only

remains to determine the equation governing n . It should be noted

that the development of the governing equations has specified all

velocities and nl in terms Of n2 ~ The surface profile, n2, can be

determined in much the same manner in which n was found, i.e.,

11 a hl 1
and can be derived from Equations �.24A! and �.24B!

ax ay

respectively and along the Equation �.23! can be introduced into the

Conservation of Mass equation for layer one, �.20A!. Consequently,

the governing equation for n2 takes the form:

g h +h ! a n a n gh gh p -p a
2 2 4

2 2 2 2 2 2 p 4
<d ax ay td 4! 1 ax

2a n a
4 4

22+4�
ax ay ay

�.2S!

For the case p = p it should be noted that the above equation re�
2

duces to the linear long wave equation in two dimensions.

The same geometry used in the one layered model will be applied

to the two layered situation. As shown in Figure 2-B, the Bay is

between Cape Cod and Cape Ann which is open to the Gulf of Maine.

The boundary conditions are formulated by specifying the velocities,

� 28�

assumed rectangular with impermeable boundaries except for the section



in both layers, equal to zero along the walls and can be summarized

as:

�. 26A!at x=0andx
0ulp u2 = 0

Vl~ v2 = 0 �. 26B!at y = 0

This suggests a solution of the following form:

q = ! A cos k x cos m yMt
2 n n n

0

�.27!

where the constants A , k , and m must be determined for each n.n' n' n

Applying now the boundary conditions in �.26A! to the assumed

solution for u, given by Equations �.22A! and �.27!, k can be

derived in the following form:

nl
k

n x
0

n = O,l,2,...

-29-

which is the same as derived previously for the one layered case and

will satisfy u as given in Equation �.24A! .

The condition that v is equal to zero at y = 0 can be applied
2

to the solution for v as given by Equations �.228! and �.27! .

Combined with the expression for v it is seen that both have a y

dependence given by sin m y which vanishes at y equal to zero. Thus
n

the assumed solution, as given by Equation �.27!, meets all the

specified boundary conditions and seems promising as the general

solution for g

Since k has been determined it now remains to find the



expression for m ~ Introducing the assumed solution for q into
n

the governing equation for the surface profile, Equation �.25!,

4 2
yields an expression which can be reduced to the form am + bm + c

n n

0. As it is quadratic, the expression can be solved directly for m
n

to the f o1lowing point.

2 hl+h2 Pl
m = � k + � +
n n 2 gh2 hl Pl P2 2 !

 h +h2!

1 2 1 2 1 2
The quantity 4 which will be f ar smaller

1  h +h ! 1
1 2

than unity. Thus, the approximation can be made that /1-c equals
1

1 � � c. arith this the final form of m is obtained as:
2 n

� ~ 29A!
nl g hl+h2

�.29a!

where �.29A! is seen to be identical to the result obtained for the

one layer model, �.15! . Thus when the Bay dimensions are small

except f or k
n

Pl P2
is suf

Pl
imaginary . H

-30-

compared to the tidal wave length it can be seen that m is imaginary
nl

0. However', m will start out by being real if
n2

ficiently small, but at some n = N, m will also become
"2

ence, the solution may be written as:



q =e fA cos m y+ ! A coskx cosh m yild t

2 o 01 n=l n n nl

N-1

+ B cos m y + ! B cos k x cos m y +
o o2 n=l n n2

B cos k x cosh m y !
n n n2

The solution for ill can now also be written in terms of A and B
n

by the substitution of Equation �.30! into Equatio~ �.23!. From

�.30! and the similarity between �.29A! and �.15! it is obvious

that the terms involving the constants A are similar to our one layer
n

model, whereas the terms involving B express the influence of the two
n

layered system.

As previously discussed, a gross conservation of mass consideration

can be defined as:

V f dy f pdx

Applying this to the total water column and integrating from x = 0 to

x and y = 0 to y yields the equation for the volume of fluid in
0 0

the bay.

= f dy f rj dx = x [A sin m y ! + B � sin m y ! ]1 1

total 2 0 0 m O 0 O m O O
0 1 0 2

�.31A!

By the same method the volume, V,of the lower layer, can be de-

termined since the solution to Tl has been determined:
l

-31-



V = J dy J n dx= x tA sin m y ! +B sin m y !]1 1
o o m o o om 0 2

1 '2

gh
-x fA m sin m y! +B m

0 2 o 0 0 0 0 0 �.31B!sin m y !]
02 0

av av2
and a , is periodicat at

The change in volume within each layer,

and must be equal to the inflow through the opening. Consequently,

as in the one layer madel, the following can be written:

av

�.32A!sty y 0

�.32B!

Since v2 is given by Equation � ' 22B! it can be shown that, by
an

substitution of v2 into Equation �.32B!, a will take the forml

an

ay

2

gh2  x2-xl! to tal 1 V -V ! �.33!

from Equation �.30! the above equation can be expressed completely in

terms of A and B . Similarly, vl can be obtained by substitutionn n'

of the solution for n2 into Equation �.24B! which when introduced

into Equation �.32A! also, by knowing V , gives an expression

completely in A and B . These equations become:n'

-32-

an
By the fact that V and V

1 total
are given and since � can be obtained

ay



La er l  Bottom Layer!

N-l  X>

+   B m cos k x sin m y � $ B m cos k x sinh m y
n n2 n I12 0 n n2 n n2 0

~i ~2 ~"2 2f ! � Ak m cos k xsinhm y
pl 2 =1 n n nl nl 0

CO
3

N-l
2+ ! A m cos k x sinh m y + ! B k m cos k x sin m ynlnnl n n 0 n n n2 Q n2 0

OD
2

N-l
3! B k m cos k x sinh m y + ! B m cos k x sin m y=N Q D n2 11 n2 o n l n n2 n n2 0

+ ! B m cos k x sinh m y ]3

n n2 n n2 0

2

+ ghl  x2 x ! 1
x < x < x

e3.s ewhe re

�. 34A!
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Am sinm y � !Am cosk xsinhm y +B m sinm y
0 ol l l l n n 0 0 02 02 0



La er 2  To La er!

CO
nA m sin m y � ! l

0 0 0 . A sinh m y + B m sin m yn='1 2 n ill 0 0 02 02 0

N-1 n

+ $ B sin m y2

2 n n2 0

m
n

B sinh m y
2

2 n n2 0

2

gh2  x2-.xl! total l v -v! xl < x < x2

elsewhere

�.34B!

Since the functions cos k x with k = nial/x are orthogonal on the
n n 0

interval x = 0, x' ,each equation can be multiplied through by
0

cos k x and integrated from 0 to x . By this method two equations,
m 0

each with two unknowns, A and B, are obtained for each n.n n'

Representatively, these take the f orm:

�.3>A!a A +b B =c A +d B
n n n n n o n o

aiA +biB =ciA +
n n n n n 0 n o

�.uB!

where the coefficients a, b, c, and d in both equations are knownn' n' n' n

functions of n. Thus, in principle �.35A! and �.35B! could be solved

to give the constants A and B as functions of n, A and B
n n 0 0

From the discussion following the derivation. of �.30! it is



clear that the constants A and B, although not independent, govern
0 0

primarily the surface and interface elevations respectively. It should

be noted that by letting B equal to zero the solution for p as
0

given by Equation �.30! approximates the form of the general solution

for tl in the one layer model ~

The constants A and B must be specified by some type of field.
0 0

information, either elevations or velocities, at a known location.

Specifying A and B allows the two equations to be solved for A and
0 0 n

B which can then be introduced into the governing equation for ~
n

With this the remaining velocities or profiles can be determined

through the appropriate governing equations.



CHAPTER III

RESULTS OF THE ONE LAYER MODEL

The one layer model represents the well mixed situation generally

found in Massachusetts Bay during the winter months . Oceanographic

data collected by the U. S. Department' of the Interior �959! shows

that far the duration of the winter season the water column is fairly

uniform in temperature and salinity because of the absence of a

thermocline. As a result the Bay can be assumed of constant density

with the one layer model being quite representative of the physical

situation. The one layer model is consequently able to yield a simple

prediction of the surface profile and currents due to the tidal action

in the Bay for the winter season.

3.1 Co utational As ects

3.1.l Mathematical Simulation of the Ocean Bounds

In the development of the general solution for the one layer

model, as given by Equation �.18!, it was stated that to predict the

surface profile and velocities the constant A must be determined by
0

field data. This field information which is required for the evaluation

of A can either be a tidal amplitude or current information specify-
0

ing speed and direction for some known point in Massachusetts Bay.

Since it is generally quite difficult to extract tidal current in-

formation from current meter records, a specified surface elevation

will be used for the determination of A . Specifically, the tidal
0

range at Boston Light, located just outside Boston Harbor, has been

-36-



determined by the National Ocean Survey �973! to be 9.0 feet with

a corresponding tidal amplitude of 4.5 feet. This information was

obtained from tide gauge records taken at Boston Light located on

Little Brewster Island shown in Figure 3 � A. With the geometry and

coordinate system speci. fied for the one layer model, Boston Light

can be located at x 10.0 NH, y = 0.0 NN.

Since the reference datum for the surface elevation in the one

layer model is mean sea level  HSL! it will be the tidal amplitude

with which we are concerned. Thus, using 4.5 feet for q at the

y coordinates specified above, A can be determined for a particular
0

geometri.cal configuration from Equation �.18! . With the determina-

tion of this constant, the current field and surface profile for the

entire Bay can be computed. lt should be cautioned that A is dis-
0

crete for only one geometrical configuration. Changing the depth of

the Bay or the width of the opening demands that' A be recalculated
o

regardless of the fact that the same surface elevation is prescribed

at the same location.

The constant A actually determines the magnitude of the forcing
0

function to be applied at the open boundary, across which the tidal

amplitude is considered constant. In the one layer model

the boundary conditions are so chosen that no interaction between the

motion in the bay and that in the ocean is considered. This has

implications where the exciting frequency is close to a resonant

frequency. However, this plays a minor role in the case of tidal

excitation of Mass Bay as will be discussed later  Section 3.3!.

-37-



Boat

0.0

Seal

l
Figure 3 � A: Massachusetts Bay', Obs rved Di f ferences in Tidal A~~p I itude
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Consequently, by specifying the tidal amplitude at y = y, the two

dimensional bay appears to be driven by a wave with the magnitude a
function of A

0

The boundary condition, specified at y = y for x < x < x
0

is given by Kquation �.12! and derived by considering the mass fIux

through the channel opening. An important assumption in determining
this boundary condition is the assumption of � or v being constantBn

ay

over the entire width of the opening. This assumption has previously
been made by Ippen and Goda �963! and would appear reasonable for

narrow openings. It should be pointed out that the specified value

of � over the opening, as given by �.l2!, is a function of A
an

ay 0
Since the value of A is determined by matching the tidal amplitude0

at one point, it. is not possible to satisfy the assumed condition of

a constant tidal amplitude across the opening. However, the opening

between x and z can be divided into increments and, since the

governing equations are linear, the solution for n can be matched at

the center of each increment. This method of solution will be dis-

cussed in detail later in this chapter.

The one layer analytical model for Massachusetts Bay was

computed for a number of variations of the geometrical configuration

presented in Figure 2-8. For the purposes of the model the bay is

assumed rectangular with a length of 59.0 NN represented as x and
0

a width of 20.0 NM represented by y . The width of the opening,
0

given by x � x and representing the ocean boundary, is assumed to2 1

be 41.0 NN while the average depth in the Bay is equal to

-39-



approximately 120 feet.

Although a number of variations were introduced into the geometry

in an attempt to simulate different conditions that could exist, only

three variations will be discussed in this report. The first and most

basic is the configuration presented in Figure 3-B which represents

the geometry specified in the theoretical development of the one layer

model. Initially, by setting YI equal to 4.5 feet at Boston Light,

the constant A can be calculated. The surface profile and current0

field in Massachusetts Bay can then be computed with the results

shown in Figure 3-B. Computed at time t = 0 from Equation �.18!,

is plotted in feet above mean sea level and corresponding to the

amplitude at high tide. The surface elevation is seen to increase

toward the southern or lower portion of the Bay. The speed and

direction of the tidal current is given in knots during maximum

ebb flow and is the result of plotting U where, as before,

As can be seen by their governing equations, these

velocities are functions of the surface slopes, � and � , and theyav an
3x By

are consequently perpendicular to the co � tidal lines. Since the

equations are periodic the surface profile attains a maximum slope
T T

at t = 4 + n 2 for n = 0, 1, 2,... with maximum velocities occuring

simultaneously over the entire bay.

The model to this point has matched the surface elevation,

with the boundary condition given by Equation �.12! at only one
x2-xl

point in the opening, i.e., 2 . It is obvious from the results

presented in. Figure 3-B that the surface slope between xl and K2
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does not equal zero and in fact the tidal amplitude varies of

the order 0.40 feet across the opening. Although seemingly insignifi-

cant, this contradicts the physical assumption that rI remains constant

across the opening. As mentioned before, a method exists such that

can be matched at more than one point along y = y between x and
o 1

x2. This is possible since the solution f or rl is ob tained f rom a

linear governing equation. Consequently, by dividing the opening

into a number of sections the effect that one section exerts on the

remaining sections can be computed. The surface elevation for the

center point of each section can then be determined as the effects

from the other sections are additive at that point. Computationally

this requires, for n sections, the solution of n equations with n

unknowns. This allows the surface elevation to be matched at n

points across the opening therefore forcing the surface profile, at

y = y, to better approximate the condition of p constant across the0

opening.

This method can be applied to the particular situation involving

a partial constriction across the channel between xl and x2. In

particular, this is introduced in an attempt to model the effect

that Stellwagen Bank exerts on the tidal flow into Massachusetts Bay.

From Figure 1-A it can be seen that Steliwagen Bank is a shoal area

between Cape Ann and Cape Cod where the average depth of the Bank

is approximately 90 feet, although in some areas depths of less than

60 feet occur. Since the possibility exists that the shoal could

form a partial blockage to the tidal flux between the Gulf of Maine



II, becomes:

�.1A!a A + b B = C
II

�.1B!II I II II

where A and B are the values of the arbitrary constants for the
II

two solutions obtained where one of the two openings is considered

open and the other closed. a and b can be calculated and reflect

the magnitude of the influence of A and B respectively at the

center of one opening and a and b reflect the same influence
II

for the second channel. C is the magnitude of the tidal amplitude

that is to be matched at the center points of both channels. From

this, Kquations �.1A! and �.1B! can be solved for the two un-

known constants A and B
II

The surface profile for this variation of the one layer model

is plotted in Figure 3-C. With an amplitude of 4.5 feet specified

at Boston Light, an increase in the surface elevation of almost 0.20

feet occurs behind the assumed impermeable wall separating the two

openings. This result casts some doubt on the validity of this

particular model, which will be discussed later  Section 3.3!, and

velocities are therefore not shown.

-43�

snd Massachusetts Bay, a method to model such an effect was introduced.

This consisted of dividing the channel opening inta two smaller chan-

nels separated by an impermeable constriction from x = 16.5 NM to

x = 29.0 NM as shown in Figure 3-C. Representatively, the method of

solution for this problem containing two channels, designated I and
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The third variation of the one layer model is similar to the

model previously discussed with a full opening between x = 0.0 NM
I

and x = 41.0 HH. Although the channel width is again 41.0 NM, the

difference occurs in the treatment of the opening and the corresponding

matched conditions. Here the channel is divided into four increments

which, for reasons previously discussed, allows a better approximation

of the boundary condition that q be constant across the opening,

since a relatively flat surface profile, at y = y , is produced for

each of the 10.25 NN increments. The method of solution discussed

in the SteLlwagen Bank model was employed and resulted in four

equations and four unknowns with the matching point for q occuring

in the center of each increment.

Results of this model are plotted in Figure 3 � D and show the

surface profile across the opening much more horizontal, and

consequently more representative of our assumed boundary condition, than

that given by the situation where 9l is matched at only one point.

Obviously, dividing the channel into increments is advantageous since

the boundary conditions are better satisfied, However, for a Large

number of channel increments, the solution becomes tedious to evaluate

since the solution will consist of the summation of n infinite series

where n is the number of channel subdivisions.

It should be noted that although the value of �  v! is specified8n
By

constant across each incremental opening, it was not imposed that

By
� be the same for all increments. The solution however clearlyBn

~ y 7

shows that �  v! is essentially the same for a11 increments, except
By
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for a region close to the tip of Cape Cod, where deviations can

be expected.

Alternate to an analytical solution, the hydrodynamic equations

for the transient response of water bodies to tidal excitation can

be solved by numerical methods. Tn particular, the finite element

model has been applied to many problems in coastal and ocean

engineering. Conner and Wang �973! have recently applied such a

model to the configuration of Massachusetts Bay. The model is re-

stricted to vertically well mixed two dimensional flow and can in-

corporate both irregular geometry and variable depth. The numerical

model employs triangular elements of varying dimensions and was

first applied to a simple geometry identical to that for which

results of the analytical model have been presented.

The surface profile and velocities are computed for the finite

element model such that. the results can be compared directly to the

one layer analytical model. The numerical model is shown in Figure

3-E and neglects bottom friction, eddy viscosity, and Coriolis

effects. Results for the numerical model compare favorably with those

given by the analytical solution shown in Figures 3-B and 3-D. It

can be seen that only small differences exist and these are partially

explainable since the boundary conditions along the ocean opening are

treated differently in the two models. The analytical model satisfies

the boundary elevation criteria at discrete points  one for the case

presented in Figure 3-B and four for the results given by Figure 3-D!

whereas the numerical model satisfies the condition of constant
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amplitude across the opening exactly. Comparison of the results

of the analytical solution with those from the numerical model serve

to demonstrate the close agreement between the two approaches and one

of the reasons for developing the analytical one layer model was in

fact to furnish Conner and Wang �973! with a particular solution

which could be used to test their numerical schemes.

3.1.2 Number of Terms Re uired in the Determination of g

The solution for q, given by Equation �.18! and the solution

for u and v, given respectively by Equations �,5A! and �.5B!, were

programmed on the Hewlett-Packard 2114B digital computer, allowing

rapid computation of the surface profile and currents for the one

layer model. It is important to note that the solution for Tl contains

a summation for n = 1 to ~. A test for convergence of the summation

and the number of terms required was of primary concern. Results

clearly indicated that convergence was achieved by n = 25 although

all computations for the one layer model were carried to n = 100.

3.2 Data Available for Co arison

Verification of the results of the one layer model, especially

the predicted surface profiles, requires field information on the

variation in tidal range over the Bay. Tide data taken by the National

Ocean Survey �973! in Massachusetts Bay has provided this information

and has allowed. the determination of the differences in tidal amplitude

and surface slope. With Boston Light as the reference point, Figure

3-A shows the differences in tidal amplitude for selected locations

around the Bay perimeter.
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The information can be directly compared with the results of the

one layer analytical ~odel. The surface profile shown in Figures 3-B

and 3-D, where the channel between xl and x is completely open,

produces some interesting facts when compared with field observations,

Both models appear somewhat conservative in predicting the longitudinal

slope from one end of the Bay to the other. Interestingly, the model

with a one increment channel, shown in Figure 3-B, best approximates

the surface slope computed from the tidal records in Cape Cod Bay.

When comparing the surface elevation at specific locations, it can be

seen that the four increment channel gives a close comparison at Race

Point and Provincetown while the one increment case compares favorably

at Gurnet Point and in the Gloucester Area.

Information on tidal currents around the Bay also allows a

qualitative comparison of the model results with field data. Current

observations taken by Butman  L97L! confirm that velocities are of

the same order of magnitude as those predicted by the model. However,

these predicted results of velocities may be somewhat af fected by the

neglect of Coriolis force and the comparison can only be considered

quali tat ive.

3.3 Discussion of the Model Results

The results of the one layer model for tidal amplitudes, when

compared with available field information, are certainly acceptable for

many situations, in spite of the many simplifying assumptions made in

the development of the model and its application. Some of these

assumptions will be discussed in the f ollowing.
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One of the terms neglected during the development of the governing

equations was the effect of friction on the tidal motion, As mentioned

previously, the bottom shear stress, v, creates a tidal phase lag

from one part of the Bay to another. However, it can be seen from the

National Ocean- Survey Tide Tables �973! that phase differences between.

the north and south end of Massachusetts Bay are small and, at high

tide, average only about 10 minutes. Consequently, the neglect of

friction seems appropriate for the physical situation considered.

Another important consideration is the possibility of resonant

oscillations occurring as a result of the tidal forces. For an analysis

of wave induced oscillations in harbors by Ippen and Gods �963!, the

resonant characteristics of simple geometrical configurations has

been determined. Applying their work on the frequency response of

asymetric harbors to the configuration assumed for Massachusetts Bay,

where the tidal wave length is of the order 456.0 NM, since L = Tvgh,

the following can be concluded: �! No resonant oscillations occur

in Massachusetts Bay as a result of tidal excitation, since even the

first resonant mode cannot be excited and �! A wave length of less

than 300 5M would be required to excite the first harmonic.

Figure 1-A shows that in the southern portion of Massachusetts

Bay, more properly called Cape Cod Bay, gradual shoaling exists from

approximately 13.0 NM offshore to the shoreline along the lower end

of the Bay. The possibility exists that an additional increase in

tidal range could occur in this area as the situation is quite analogous

to a progressive two dimensional reflecting wave from a gently sloping
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beach. That the tidal wave in the southern part of the Bay may be

regarded approximately as a two dimensional standing wave in the x-

direction is evident from the results given in, for example, Figure

3-D. This problem was treated by Doret and Nadsen �972! and using

their results an increase in tidal amplitude, due to the shoaling at

the lower end. of the Bay, may be estimated to be of the order 0.06

ft., which is insignificant although giving a closer agreement between

predicted and observed tidal amplitudes in this part of the Bay.

The variation simulating the effect of Stellwagen Bank on the

tidal motion of Massachusetts Bay, although producing some interesting

results, exhibits an increase in tidal amplitude behind the assumed

barrier. Since the average depth of the shoal is only about 30 feet

less than the average depth of the Bay, the effect of this increase

in surface elevation will result in a considerable amount of volume

exchange taking place over the shoal. This is not consistent with our

assumption of an impermeable barrier, and conseouently this model is

discarded.

Certain known phenomena occurring in Massachusetts Bay contribute

to some of the differences seen between the analytical results and

field data. One of these is the body of water contained within the

area surrounding Boston Harbor. This is a relatively shallow basin

that most surely influences the hydrodynamics of the Bay, especially

since it is the discharge point for three rivers in the Boston area.

Additionally, the Cape Cod Canal, which forms an artery between

Massachusetts Bay and Buzzards Bay l5 NM to the southwest, has a strong
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effect on Y! as can be seen in Figure 3-A. A 0.5 foot discrepency

exists between the model results and the observed tidal height at the

entrance to the Canal. Obviously, the fact that a phase lag of

approximately 2.5 hours between the two Bays contributes to this

discrepency. These features should of course be simulated in a

more sophisticated model.

En spite of the many assumptions involved, the one layer model

seems quite representative of the physical situation observed in

Massachusetts Bay as was seen from the results presented in Section

3.1.1. Comparison of the analytical results with tide data especially

demonstrates the predictability of the model with a fully open

channel between R] and x2 Although the surface profile given by the

four increment channel in Figure 3-D better satisfies the imposed

boundary conditions than that given by the one increment situation in

Figure 3-B, the goodness of one variation over the other, when com-

pared to field information, is difficult to assess. The tidal velocities

given by the model are less reliable than the surface elevations but

may produce an overview of the current field that can be expected in

the Bay. Thus, keeping the desired simplicity of the model in mind,

we conclude that results of the one layer model, with just one opening

considered in its entirety, gives a resonable description of the tidal

motion in Massachusetts Bay.
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CHAPTER IV

RESULTS OF THE TWO LAYER MODEL

The two layer analytical model, as mentioned previously, was

developed in response to the physical characteristics encountered in

Massachusetts Bay during the spring, summer, and fall. Oceanographic

observations since 1925 at the Boston Lightship, as reported by the

U. S. Department of the Interior �959!, show that the thermocline

generally forms in May and overturns in September and October. Thus,

stratification due to the variation in both temperature and salinity

prevails for approximately six months out of the year ~

Although the thermocline is quite variable in depth, historical

data taken at Boston Lightship locates the average depth of the

interface 30 feet below the surface. Water depth at the Lightship,

which is approximately six nautical miles east of the entrance to

Boston Harbor, is 100 feet at mean low water.  It should be noted

that the Lightship, not to be confused with Boston Light, was moved

to a new location on July 1, 1973. All references to Boston Lightship

in this report are for its previous position of 42 20.4 ' N, 70'45.5 ' W!

4. 1 Co utational Considerations

4.1.1 Results of the Two La er Model

The stratified case was developed as a simple model with the

capability of determining velocities and elevations in both layers.

Derivation of the governing equations for the stratified model

parallels the theoretical development of the one layer model such
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that the solutions for all velocities and the interface elevation p

are specified in terms of the surface elevation g2.

The general solution for rl, given by Equation �.30!, is a

function of the constants A and B and it can be shown that A
n n 0

essentially governs the surface profile while the motion of the inter-

face is governed essentially by B . By setting B equal to zero, in
a 0

Equation �.30!,rt2 takes the farm:

Tl =A cos m y+   A cos k xcashm y2 0 ol l n n nl

N � 1 OD

+ ! B cos k x cosh m y + ! B cos k x cosh m y
n n n n I12

�. l!

and it can be shown by calculation that the summation of the terms

containing B for n > 0 is small compared to the summation of the
n

terms containing A 's.
n

The solution for B equal to zero shows that n closely
0

approximates the solution for tl in the one layer model. Thus, we

identify the constant A as the one essentially governing the surface
0

elevatians whereas the value of the constant B is reflected in the
0

interface elevations.

The procedure for solving for the constants A and B contained
0 0

in the general solution for rt, Equation �.30!, is discussed in

Chapter II and is similar to the method for determining A in the
0

one layer model. For the stratified case, both a surface amplitude

relative to mean sea level  NSL! and an interfacial amplitude
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relative to the mean interfacial level must be specified at some point

within the Bay. Alternatively, current velocities could be specified

in each of the two layers although, as explained in the preceeding

chapter, this data is often difficult to interpret from current

records. With information on the surface and interface the two

constants can be determined either through an iterative process or

directly by rearrangement of the equations given representatively

by �.35A! and � ' 35B!.

Oceanographic data in the form of vertical profiles of

temperature and salinity in Massachusetts Bay have been taken by

various agencies and institutions, Unfortunately it is difficult

to determine, with any degree of accuracy, the ampli.tude of the

interface for a given location as the variation of temperature

representing the thermocline is not discrete but varies rapidly in

the vertical direction over a distance of as much as ten feet. As

a result, unlike the information on the surface profile which is

fairly well documented, the amplitude of the interface was specified

arbitrarily at a certain location to allow for the determination of

the two constants in Equation �.30! . Choosing the coordinates of

x = l0.0 NM, y = 5.0 NM, the surface elevation, from the results of

the one layer model, has been found to be of the order 4.5 feet.

It is reasonable to assume that, for an h of 20 feet, the amplitude

of the interface is approximately 5/6 the amplitude of the surface

wave. Consequently, tl was chosen as 3.5 feet at this location.
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With this information, the constants A and B can be computed
0 0

for the two layer model. Through the solutions for the velocities

and elevations given in the theoretical development, the surface

and interfacial profiles and currents can be computed f ar Massachusetts

Bay. The geometry of the stratified model is the same as that

assumed for' the one layer case where x 0.0 NM and x = 41.0 NM.
1 2

Results of the one layer model indicate that the fully open channel

with no constrictions gave a fair representation of the physical

situation and consequently only this configuration will be considered

for the two layer model.

The solutions for the amplitude and velocities, as in the one

layer model, contain summations for n = 1 to ~. Although convergence

in this model was obtained by n = 50, the large number of computations

required that the equations be solved on the IBM 370/155 computer

located at M.I.T. A listing of this computer program, written in

Fortran, can be found in Appendix A.

Results of the two layer analytical model can now be determined

for a particular situation similar to that frequently found in

Massachusetts Bay. Taken from actual field observations, the

following parameters were first specified as input inta the model.

h = 100 feet, h = 20 feet, p = 1.02558 g/cm , p = 1.02250 g/cm
3 3

By additionally setting rl = 3.5 feet and p = 4.5 feet at x = 10.0 NM,

y = 5.0 NM, the interface and surface amplitudes can be computed by

respectively Equations �.23! and �.30! w'ith the resulting profiles

shown in Figure 4-A. It can be seen that the surface profile is quite
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similar to that given by the one layer model  Figure 3-B! with the

same geometrical configuration. Although the surface amplitude of

4.5 feet is specified at a slightly different location than in the

one layer situation, the surface slope compares favorably with the

model results and observational data previously presented. The

surface profiles were smoothed slightly as small perturbations

occurring in the contour lines were neglected.

From Figure 4-A it can be seen that the interfacial profile

predicted for the two layer model exhibits some rather interesting

and unusual results. Measured relative to the mean interfacial

level, hl, this particular model shows the interface oscillating

vertically from � 2.0 feet to + 15.0 feet with a wave length of the

order 11.0 nautical miles. Since the solution for rl is periodic,

the model resultingly predicts a standing wave which, at high tide,

rises to within 10 feet of the free surface.

Velocities for this particular case are shown in Fi.gure 4-5.

The velocities are specified in terms of x and y derivatives of rl

and consequently the surface profile determines the magnitude and

direction of both U and U . By the nature of the equations for u

and v , given respectively by Equations �.22A! and �,22B!, the

currents predicted in the upper layer are always perpendicular to the

lines of constant surface amplitude with the velocity a function of

the existing surface slope. The currents in the lower layer are

specified as a function of both the first and third derivatives of

It will be noticed that the magnitude of U is greater than that
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of U at some positions in the model; at other locations the reverse

is true. Of greater importance is the prediction that the directions

of the currents in the two layers do not coincide.

The two layer analytical model was changed slightly and the

amplitudes and velocities were computed for a second set of cir-

cums tances. The geometrical conf iguration remained the same; however,

the dif ference in density between the two layers was increased

slightly from the 0.3 per cent, given in the first set of results, to

0.5 per cent. The new densities were specified as p = 1.0050 g/cm
3

3and p2 = 1.000 g/cm . In addition, t' he depth of the interface was

increased by 20 feet such that h = 80.0 feet and h = 40.0 feet. The

surface and the interfacial amplitudes were again specified at x =

10.0 NM, y = 5.0 NM under the same set of assumptions as discussed

earlier. Thus, again by setting ~ = 4.5 feet it is reasonable to
h

assume the amplitude of the interface as   !g2 or 3.0 feet. For
1 2

these conditions the stratified model was again solved for the area

of Massachusetts Hay.

The surface and interfacial profiles for this model are shown

in Figure 4-C. Obviously, much more activity exists here than in

the previously discussed case. The surface profile, in this extreme

case, reflects the influence of the interfacial waves. Close examina-

tion of the results of Figure 4-C as compared with Figure 3-3 reveal

the fact that the surface is lower, relatively, over an interfacial

crest and higher over an interfacial trough. This serves to demon-

strate the dependence of rll on r] as discussed in the theoretical
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development of the two layer model. The interface exhibits some

exceedingly large waves with a height of the order SO feet and a

wave length of approximately 24.0 NH.

The velocities in the upper and lour layer for this particular

situation are given in Figure 4-D. Of primary importance in the

results is the fact that, with large vertical displacements of the

interface, currents in the two layers are quite variable and, at

some positions, almost opposing each other. The currents in the

vicinity of the boundaries are also unusual by the fact that, at

some locations, on the ebbing  outgoing! tide, which is shown, they

flow towards the walls and away from the channel opening in the

upper layer. Resultingly, the interface and surface profiles and

speed and direction of the currents are extremely variable and

physically difficult to determine since the various parameters appear

to be quite sensitive to position. This is in qualitative agreement

with available field observations to be presented later in this

chapter, which indicate that, to a degree, this condition persists.

4.1.2 Model Sensitivit

The two layer analytical model was computed for a number of

geometrical configurations and physical conditions in an attempt to

check the sensitivity of the solution. As seen by the amplitudes and

velocities predicted for the two cases just discussed, the model is

very sensitive to changes in the interfacial depth and /or changes

in density. Consequently, an attempt to quanti.fy the importance of

these and other variables has been completed through a sensitivity

analysis. The results are presented herein.
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The two constants A and B that were required in the general
D 0

solution for rl2 shall be first discussed. As pointed out in Section

4.1.1, the constants are generally determined through the applica-

tion of field data prior to their introduction into Equation �.30! .

Also noted was the fact that the value of A primarily governs the
o

pL � 1.0050 g/cm3

p2 = 1.0000 g/cm3
Constant Conditions: h = 80.0 ft.

1

h = 40.0 ft.
2

Resul ting
Cons tan ts

Specified Elevations
x = 10.0 NM, y = 5.0 NM

Maximum Interfacial

Wave Height

q  ft.! F2 ft.! A
0

4. 684 � 0. 00790

4.685 -0.00491

3.0 504.5

283.5

0.04,54 ~ 32 4.670

Table 4-1: Sensitivity of B to the Choice of Interfacial Amplitude
0
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surface profile, q, while the value of B is the determining factor
0

in the shape of the interface, 1l . Jn checking the sensitivity of

the two, it was found that by varying the constant A the surface0

and interface reacted by the same order of magnitude while a small

change in the constant B brought almost no change to the surface
0

profile although creating interfacial disturbances of significantly

different magnitudes. Thus, it can be concluded that, in determining

the value of B, the initial conditions specified for the interface
0

must be chosen carefully and as precisely as possible. The following

clearly demonstrates the situation and the sensitivity of the

interface to B
0



As a consequence of the large interfacial variations shown in

the results of the two layer model and in view of the above informa-

tion concerning the constants A and B, it is apparent that the
0 0

model is very sensitive to the location at which tl is initially

specified. In the two cases presented for the two layer model,

both the surface and interfacial amplitude were specified at the

coordinates x = l0.0 NN, y = S.O NM. From Figure 4-A and Figure 4-C

it can be seen that this position is approximately mid-way between

the trough and the crest of the interfacial standing wave, Obviously

then small changes in the interfacial wave amplitude at this point

will force the solution for p to predict relatively large vertical

displacements in the areas of the troughs and crests . Clearly, the

solution to this problem is to first determine, for a particular set

of conditions, the locations of the 'highs' and the 'iowa' of the

interfacial waves. This information can be used in the choice of

location where the value of gi and q should be measured in order to

give the best possible resolution such that the model will give

reasonable results and an interfacial wave the least sensitive to

errors in the measurements.

Variation of the geometrical configuration, especially that

of the length scale, was an additional criteria which could produce

changes in the results. The average length, x , of the Bay was
D

assumed to be of the order 59.0 NM and all the results presented were

computed on this basis. To assure that the solution was not sen-

sitive or that no unusual conditions existed in the particular
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configuration, the two layer analytical model. was run for a number

of different lengths. The most important aspect of this analysis

was that the results generally indicated that the amplitude and

length would be of the same order of magnitude and that, for all

practical purposes, a small change in the value of x would produce
0

no unusual results.

Results of density variations have already been indicated by

the two cases discussed in Section 4.1.1. The sensitivity of the

solution to changes in density are quite pronounced again affecting

primarily the profile of the interface. As previously mentioned,

the average difference in density found in Massachusetts Bay between

the upper and lower layer during stratification is of the order 0.3

per cent ~ That condition was presented by Figures 4-A and 4 � B with

the second set of results, Figures 4-C and 4-D, showing hp of the

extreme value of 0.5 per cent. Differences between the two sets

of results cannot be attributed only to the change in hp since some

influence is possible due to the variation of hl and h2,

The last set of parameters which merit discussion are the values

of h and h . With h representing the thickness of the lower layer

and h the thickness of the upper layer, the sum of the two was

always equal to 120 feet, the average depth of Massachusetts Bay.

Sensitivity of the solution to variations in h and h was checked

in a number of cases with the result that by increasing the value of

h the interfacial amplitude decreased as did the interfacial wave

length.
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From �.20B! it is clear that the influence of changing Ap

and the relative magnitude of h and h2 are related, in that they

combine to give the wave number m . To illus trate the variations with
n2

the various parameters, the velocities at selected points are

presented in Figure 4-E.

U  Upper Layer!
0.0 0.25 0.5

Velocity Scale   Pt ~ /sec.!U  Lower Layer! � � � ��
1

10.0

5.0

9,0

2.0

13. 0

2.0

arame ters .

At x=10.0, y=5.0
pi=3.5 Ft., F2=4.5 Ft.

Figure 4-E: Velocity Variations as a
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l

<1= 1 . 02558 g/cm3
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Most of the discussion concerning the sensitivity af the model

to various parameters has been discussed in terms of the changes

occurring in the interface. However, the surface profile and vel-

ocities in the two layers also exhibit variation as shown in Figure

4-E, although relatively minor, when changes occur in the geometry

or in the specified conditions. By far though the most significant

example of sensitivity in the model is exhibited by the interface

and its reaction to variation of the imput parameters.

4.2 Available Data for Co arison

Results of the two layer analytical model can be compared with

available field observations for the Massachusetts Bay area. The

field data consists mainly of information on the surface profile,

temporal and spatial measurements of the temperature and salinity

structure, and current drogue measurements. A large number of

oceanographic observations have been collected in the Bay by various

agencies and ins titutions during the summer months and the data

presented here gives a good overview of the condition present during

s tra ti f ication.

Data compiled in the National Ocean Survey Tide Tables �973!

is used for a comparison with the surface amplitude predicted by

the two layer model. This information is taken from observational

records at various locations around the Bay perimeter as shown in

Figure 3-A.

The vertical structure of temperature over the water column

has been one of the most widely studied oceanographic phenomena for
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many decades. Temperature observations at Boston Lightship have been

taken on a daily basis since 1925 and have af forded many insights

into the thermal conditions in Massachusetts Bay. Thus far, the level

of the interface has been generally considered a function of the

thermocline although this is not strictly true since the variation

of salinity also af fects the density of sea water. Consequently,

with the advent of the newer oceanographic instrumentation, in par-

ticular the CTD  Conductivity, Temperature, and Depth!, salini ty

along with temperature can be determined allowing the calculation of

a true density profile for each station recorded. Although the

therzocline and density gradient normally coincide, neither is discrete

but occur as a gradual variation over relatively large vertical dis-

tances. Hence, it is difficult to determine, with any precision,

the exact depth of the interface and to detect small perturbations

that may occur at this level.

As an example of this problem, a sample C.T.D. cast, taken

in the vicinity of Boston Lightship, is shown in Figure 4-F. For-

tunately though the model predicts relatively large vertical variations

of p and consequently the data presented herein will attempt to

verify, qualitatively, some of the conditions that may exist.

Oceanographic observations from a buoy located in Stellwagen

Basin, approximately 5.5 NM west of Stellwagen Bank, were taken by

Halpern in July and August, 1966. Vertical observations of temperature

were collected at the position 42 16.5' N, 70'24.5' W for a total of

5 days with the result that the temporal variation of the thermocl ine
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C.T.D. Cast

Temperature  Degrees C.!
12 15 18

I I I
Conductivitv  milli-mhos/cm!

33 37 41

21

Computed

Salinity29
0.0 31.8 ppt

31 .72.5

� 31.65.0

31.6

10.0 31.5

12.5 31.4

15.0 R/V R. R. Shrock
Station /3 6
July 27, 1972
Time: 1645 EDT

Raydist Position
R � 268.69

G - 338.35

Temperature Trace

Conductivity Trace

Figure 4-F: C.T.D. Gast Taken in Massachusetts Bay
� 71�



which are also responsible for generation of short periodtide

internal waves. However, for our purposes, the information serves

to qualitatively confirm some of the predictions given by the two

layer model.

A second set of measurements, spatial in nature, are presented

to further verify the motion of the interface. In particular,

� 72-

was well documented at this point of space for a period of time ~

Halpern reported his observations in a paper on the short-period

internal waves in Massachusetts Bay  Halpern, 197la! and again

in a discussion of semidurnal internal tides in Massachusetts Bay

 Halpern, 1971b! . Concerned primarily with the vertical movement of

the thermocline, no information on salinity was obtained and con-

sequently temperature measurements wi	 serve as the primary indicator

for the degree and depth of stratification.

Halpern's data locates the average depth of the thermocline

approximately 40 feet below the surface with a semidurnal variation

of temperature at this depth of approximately ll'F. The most

interesting information concerns the vertical displacement of the

thermocline, or for our purpose, the interface, with the result that

the amplitude of the interfacial wave is of the order lS feet. Clearly,

this is of great interest since the model predi.cts a periodic motion

of a similar magnitude. Although the motion of the interface, from.

Halpern's observations, is not a purely sinusoidal function, the

possibility exists that this is the result of non-linear effects

associated with water spilling over Stellwagen Bank on the flooding



C.T.D. Stations � July 26, 1973
Low Tide  NOS Tide Tables! 1432 EDT

x& y  NM!
Coordinates

Depth  Ft. ! of
45'F Isotherm

Station Ti~ Position

Number  EDT! Lat. 6 Long.
Water

Depth  Ft ~ !

1300 42 05.8' N
70'31.3' W

2713514 x = 32.Q

y = 6.0

1340 42'09 ' 8' N
70'31 ' 2' W

14615 x = 28.Q

y - 8.0

1430 42'14.0' N

70'37.0' W
2610316 x = 22.0

y = 6.0

Table 4-2: Observed Spatial Variation in Depth
of Interface below the Surface
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oceanographic observations, using the C.T.D., have been taken by M.I. T.

under the Massachusetts Bay Sea Grant Program. This data has been

collected aboard the research vessels R.R. Shrock and Walter E, Phipps

allowing a quick on-board determination of. the temperature and salinity

structure at each station. Almost 20 of these C.T.D. profiles were

taken in the Bay on a chemistry cruise conducted on July 25 and 26,

1973. Resultingly, the depth af the interface was determined at a

number of locations approximately 5.0 NM apart. The observations used

for comparison, although not entirely synoptic, were taken as close to

the time predicted for low tide as possible in order to reduce the

effects of periodic motion. The 45'F isotherm was used for the depth

of the thermocline since it was the temperature at which the largest

density gradient occurred. Using this temperature as the indicator for

the interface, the results of three of these C.T.D. stations are

presented.



These stations, located along the western side of Massachusetts

Bay close to the 120 foot contour, point to the fact that vertical

variations of the order 17.0 feet occur in the int rface over a

horizontal distance of approximately 5.0 NM. Obviously this in-

formation supports the fact that relatively large interfacial waves

can be found in the Bay as predicted by the two layer model and

shown in Figure 4-A and 4-C.

Information on the currents in Massachusetts Bay, occurring

during stratification, has also been collected by M.I.T. These

studies were generally completed through the use of drogues or

drifters that employed a large subsurface vane set at a preselected

depth and suspended from a relatively small surface float. During

stratification, the depth af the vanes was normally determined as a

function of the level of the interface with one set of vanes placed

in the upper layer and a second set in the lower layer. By following

the path of the surface floats the speed and direction of the currents

could be computed for the two depths. With this information some

idea of the velocity profile could be determined as well as the

variability in speed and direction of the two layers.

One such current study was conducted on July 27, 1972 aboard

the M.I.T. research vessel R.R. Shrock. Through the C.T.D. casts

taken on this cruise, one of which is shown in Figure 4-F, the depth

of the thermocline was estimated at approximately 20.0 feet. Average

densities for the two layers were computed from the temperature and

3
salinity information with the result that p - 1.02558 g/cm and

3p2 - 1.02250 g/cm . It should be noted that these were the conditions
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specified in the two layer model shown by Figures 4-A and 4-B.

Results of this current drogue study are given in Figure 4-G and

it can be seen that the drogue depths were selected so as to be

representative of the conditions existing in the two layers. Shown

are the directions and velocities of the currents for a seven hour

duration taken during an ebbing tide from high to low water It

can be seen that for approximately half of the duration the drogues

in the upper layer proceeded southwesterly while those in layer one

moved more in a southerly direction and at a slower velocity.

During this time the Bay was considered to be in a steady state

condition since a 5 to 10 knot wind had been blowing from the north-

east for the past 18 hours. However, at approximately the mid-point

of the observations, the wind shifted to the southeast 5 to l0 knots

and continued in that direction for the remainder of the day. At

this time it can be seen that the dzogues changed direction such that

the surface layer reacted directly to the wind stress. The lower

layer apparently also reacted by moving in a northeasterly direction

which is to be expected if the interface was forced down as a result

of the thickness of the surface layer increasing due to the wind

setup. It is the steady state condition for which model predicti.ons

of the currents in the two layers can be made. Consequently it is the

first half of the drogue observations that. is of interest for com-

parison with the model results as will be discussed in the next

section. However, the results point out the great importance of

wind driven currents. The last field data to be considered will be
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that taken during a second drogue study conducted for N.I.T. on

July 31, 1972. Although the G.T.D. was inoperable this particular

day, it can be assumed that approximately the same density conditions

and interfacial depth exist as were recorded from the study completed

on July 27. Again the Bay can be assumed in steady state since the

wind, f or the pas t l8 hours, was generally f rom the south at 5 to

10 knots. Only a slight wind shift to the southwest was observed

during the drogue observations and this was considered to have a

negligible e f f ect on the currents.

Results of this study are shown in Figure 4-H where the ob-

servations were taken from low to high tide during the flooding

situation. Although the currents in the lower layer maintained a

relatively constant speed and direction, the upper layer revealed a

slow change in direction swinging from almost east to around to

south-southwest. The important consideration in these observations

is that, for most of the time, there is an angular difference between

the currents in the two layers. In addition, both drogue studies

show that, it is indeed observed that, the currents in the upper

layer can proceed in a direction quite different from that normally

expected during either a flooding or ebbing tide if only a one layer

model is considered.

4.3 Discussion of the Model Results

The need to include the effect of a two layer model has been

seen by the conditions existing in Massachusetts Bay during the

summer months. The results af this model have been shown and can now
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be compared with field observations of both currents and elevations.

However, the comparisons will generally show agreement only in a

qualitative sense since the interface separating the two layers in

the Bay is rarely well defined and generally can only be determined

within certain limits. This uncertainty is reflected in our arbitrary

choice of specifying the interfacial amplitude at x = 10 HM, y =

5 NM. Consequently the comparisons will be qualitative in nature

but will serve to demonstrate the ability of the two layer model

to explain some of the conditions that have been observed in

Massachusetts Bay.

The results of the surface and interfacial profiles will be

compared first with the available field data. Similar to the profile

for rl given in the one layer model for a fully open channel, Figure

3-8, the surface profile shown in Figure 4-A compares quite closely

with the observed tidal amplitudes around the Bay. The surface

profile given in Figure 4 � C does not, in the details, compare as well

with the results of the one layer ~odel presented in Figure 3-3.

Thus, the large interfacial waves result in a significant variation

in the surface contours. This large difference in surface contours

is, however, not of great significance when considering the fact that

the contours are drawn for intervals of 0.1 feet. Thus, in terms of

actual surface elevation, the predictions are not drastically different

between the one and two layer models.

The interfacial profile, given by the solution for g exhibits

the most dramatic and somewhat unexpected characterictics. The
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results shown in Figures 4-A and 4-B are the amplitude and velocities

predicted for the same densities and interfacial depth as observed

in Massachusetts Bay during the current drogue study of July 27, 1972.

Resultingly the predicted interfacial profile is considered to be

fairly representative of the physical situation that could exist.

However, due to instrument problems, only a limited number of C. T.D.

casts were taken during the drogue study. Consequently, the model

predictions will be compared with vertical observations taken by

Halpern in Stellwagen Basin and by the M.I.T. C.T.D. stations of

July, 1973.

The total vertical variation of the thermocline, as observed

by Halpern, was of the order of 30 feet giving an interfacial

amplitude of approximately 15 feet. Comparing this value with

the results in Figure 4-A shows that the order of magnitude is

certainly reasonab]e since the model also predicts an q of 15 feet.

In fact, considering the sensitivity of the model to changes in h

and without further knowledge of the conditions surrounding Halpern's

data, the prediction for rl can actually be considered reasonably

good.

The information obtained from the C.T.D. casts, taken by

M.I.T. in July, 1973, verify the fact that interfacial waves exist

in Massachusetts Bay. This data was synoptic in the sense that it

was taken as close to low tide as possible when hopefu11y slack con-

ditions existed. Unfortunately, the actual wave length, L , of the

interface could not be computed from the limited field data taken

although the model predicts an Ll of the order 11.0 NM as seen in
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Figure 4-A. It should be mentioned that a similar condition has

been noted and discussed by other investigators under the sub]ect of

internal waves. It is obvious that the interfacial waves, qualitative-

ly, predicted by the two layer model, are evidenced both by Halpern's

data and H.I.T.'s C.T.D. casts.

Currents predicted in the two layers can be compared directly

with current drogue observations shown in Figures 4 � G and 4-H. As

previously mentioned, the first set of results presented for the

stratified model are determined for the same conditions as observed

in the field during the drogue studies. These results are presented

in expanded form in Figure 4-I and show the variability that can

be expected in the currents along the boundary in Massachusetts Bay.

Zt is important to note that the two drogue studies were also

completed close to the Boston Lightship and the western edge of the

Bay in a location, as shown by the predicted results in Figure 4-I,

where currents vary drastically with location and are predicted to

flow shoreward during an ebbing tide and seaward during the flood

in the upper layer. Although the model results do not predict the

exact direction given by the drogues, due probably to the effects of

Boston Harbor and the surrounding geometry in addition to the

neglect of Coriolis force, it is obvious that the model shows that

a large difference in current directions is possible during stratifi-

cation in this area. This is in qualitative agreement with observa-

tions as shown in Figures 4-G and 4-H.
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En addition to showing an angular difference in the current

direction in the two layers, it demonstrates the sensitivity of the

observations to location, especially when close to the boundary.

From the results of the two layer model shown in Figure 4-T, an angular

change of up to '180' in the current direction in the upper layer can

be observed over a distance of only a few miles in the Bay
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CHAPTER V

CONCLUDING REMARKS

Two analytical models have been derived for a geometrical

configuration similar to that of Massachusetts Bay. A simplistic

approach was taken in the theoretical development of the models by depth

averaging the linear long wave equations in two dimensions. By neglect-

ing Coriolis force, bottom friction, and wind stress the models were

able to represent the tidal circulation for both the uniformly well

mixed and stratified case and to explain qualitatively some of the

conditions encountered during field observations. Results of the two

models were presented for a number of geometrical variations and

physical conditions and compared with various types of field observations

for verification of the model predictions.

The one layer model, representing the situation generally found

during the winter, was discussed first and compared with tidal data and

current observations. Comparison of the results of the model with tide

gauge observations demonstrated the ability of the model to predict,

quite closely, the surface profile for Massachusetts Bay. Velocities

of the tidal currents also compared favorably with field data in a

qualitative sense, and generally were the same order of magnitude;

Current direction was the most difficult to verify as current meter

records were often quite variable in this respect showing the effects

of localized conditions.
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Results of the two layer analytical model were considered more

revealing in the sense that insight was gained into the conditions

present during stratification. These results were compared with various

types of field observations in an attempt to verify qualitatively the

significance of using a two layer model to predict interface and surface

profiles and currents. Reasonably good agreement was found when

comparing the predicted surface profile with the observed tidal

amplitudes. Differences between the predicted tidal amplitudes of the

one layer model are minor and the differences between the two models

and the observed tidal amplitudes can be attributed to the effects of

Boston Harbor, the Cape Cod Canal, and the sloping bottom of the lower

Bay,

Comparisons of the interfacial profile and current velocities

predicted by the model with available field data are generally more

qualitative since the physical conditions, especially the depth of the

interface as well as the amplitude of the interfacial wave, that govern

the solution cannot be determined very accurately. However, observa-

tions by both Halpern and M.I.T. verify the existance of interfacial

waves and show the amplitude of the same order of magnitude as that

predicted by the two layer model.

Currents predicted by the model were the most difficult to verify

by field measureamnts since the physical observations clearly exhibit

a high degree of variability over the tidal cycle. The drogue studies

were apparently subject to variations due to relatively small changes

in wind direction and, in the area surveyed, the observations are
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probably affected by the flux in and out of Boston Harbor. In view

of these existing conditions only a quali.tative comparison can be made.

This comparison however shows that the velocities predicted by the

model are within the order of magnitude of those measured in Massa-

chusetts Bay, also the observed curiosity of having shoreward current

in the upper layer during an ebbing tide is made plausible by a similar

prediction by the two layer model.

The two layer analytical model has clearly demonstrated its ability

to explain qualitatively observed phenomena as well as giving an insight

into conditions that are not readily apparent. Although it represents

a highly simplified approach to a rather complex physical problem, it

produces useful information on Massachusetts Bay and can assist the

coastal engineer in solving problems related to the ocean environment.

Obviously, the development of more sophisticated one and two layer

models would be advantageous. It was shown in the theoretical

development that Coriolis force exerts some influence and from comparing

model results with field data it can be seen that including Boston

Harbor, the Cape Cod Canal, and introducing a wind stress would more

realistically describe the physical conditions. However, the objective

was to develop a simple analytical model of Massachusetts Bay and

thereby demonstrate that if current predictions are desired one should

indeed have a two layer model. This goal has been achieved in the

qualitative agreement of predicted and observed phenomena in

Massachusetts Bay.
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APPENDIX A

LISTING OF THE PROGRAM USED FOR THE

COMPUTATIONS PRESENTED IN CHAPTER IV

The program used for the computation of the solution for the

two layer model is presented along with a sample of the output. The

"comment cards" should make the program self � explainatory.
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